Sulfoxides as urinary metabolites of S-allyl-L-cysteine in rats: evidence for the involvement of flavin-containing monooxygenases.
نویسندگان
چکیده
S-Allyl-L-cysteine (SAC), a component of garlic and a metabolite of allyl halides, is a known substrate for multiple flavin-containing monooxygenases (FMOs). In the current study, we characterize the in vivo SAC metabolism by investigating the presence of SAC, N-acetyl-S-allyl-L-cysteine (NASAC), and their corresponding sulfoxides in the urine of rats given SAC (200 or 400 mg/kg i.p.). In some experiments, rats were given aminooxyacetic acid (AOAA), an inhibitor of cysteine conjugate beta-lyase, or methimazole, an alternative FMO substrate, 30 min prior to treatment with 200 mg/kg SAC. Nearly 40 to 50% of the dose was recovered in the 24-h collection period. In all treatment groups, the majority of the metabolites were excreted within 8 h. The major metabolites detected were NASAC and NASAC sulfoxide (NASACS; nearly 30-40% and 5-10% of the dose, respectively). Only small amounts of the dose (approximately 1.5%) were recovered as SAC and SAC sulfoxide (SACS). Methimazole pretreatment significantly reduced amounts of both SACS and NASACS detected in the urine when compared with rats given SAC only, whereas AOAA pretreatment had no effect. In vitro assays using rat liver microsomes were also carried out to compare the sulfoxidation rates of SAC and NASAC. The results showed that SAC was much more readily oxidized than NASAC. Collectively, the results provide evidence for the involvement of FMOs in the in vivo metabolism of SAC and that SAC is a much better substrate for FMOs than its corresponding mercapturic acid.
منابع مشابه
Human kidney flavin-containing monooxygenases and their potential roles in cysteine s-conjugate metabolism and nephrotoxicity.
The potential roles of human hepatic and renal flavin-containing monooxygenases (FMOs) in the metabolism of the cysteine S-conjugates S-allyl cysteine (SAC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) were investigated. Incubations of human cDNA-expressed FMO1, FMO3, FMO4, and FMO5 with SAC resulted in detection of SAC sulfoxide, with FMO3 exhibiting approximately 3-, 4-, and 10-fold higher act...
متن کاملMicrobial Flavoprotein Monooxygenases as Mimics of Mammalian Flavin-Containing Monooxygenases for the Enantioselective Preparation of Drug Metabolites.
Mammalian flavin-containing monooxygenases, which are difficult to obtain and study, play a major role in detoxifying various xenobiotics. To provide alternative biocatalytic tools to generate flavin-containing monooxygenases (FMO)-derived drug metabolites, a collection of microbial flavoprotein monooxygenases, sequence-related to human FMOs, was tested for their ability to oxidize a set of xen...
متن کاملDmd063230 749..755
The metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites—N-acetylS-allyl-L-cysteine (NAc-SAC), N-acetyl-S-allyl-L-cysteine sulfoxide (NAc...
متن کاملS-Allyl Cysteine Mitigates Kidney Dysfunctions in the Rat Models of Preeclampsia and Eclampsia: The Possible Role of TNF-α and IL1-β
Background and Objective: Preeclampsia (PE) is a pregnancy complication with the signs of kidney damage. The effect of S-Allyl-cysteine (SAC) on inflammatory cytokines was evaluated to prevent PE-induced renal complications. Materials and Methods: Wistar rats were divided into seven groups: 1) control, 2) PE, 3) EC, 4) PE+SAC50, 5) PE+SAC200, 6) EC+SAC50, and 7) EC+SAC200. In Groups 1-3, the r...
متن کاملGarlic γ-glutamyl transpeptidases that catalyze deglutamylation of biosynthetic intermediate of alliin
S-Alk(en)yl-L-cysteine sulfoxides are pharmaceutically important secondary metabolites produced by plants that belong to the genus Allium. Biosynthesis of S-alk(en)yl-L-cysteine sulfoxides is initiated by S-alk(en)ylation of glutathione, which is followed by the removal of glycyl and γ-glutamyl groups and S-oxygenation. However, most of the enzymes involved in the biosynthesis of S-alk(en)yl-L-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 30 10 شماره
صفحات -
تاریخ انتشار 2002